

Spectrograph design for POLLUX: preliminary estimations

Eduard Muslimov

Laboratoire d'Astrophysique de Marseille (LAM)

Aix*Marseille université

erc

Paris, 3-4 April 2017

Problem statement

POLLUX is a high-resolution UV spectropolarimeter for the future LUVOIR large space telescope with the following target parameters

Parameter	Target value	Top goal	Comment
Shortest wavelength	98 nm	90 nm	
Longest wavelength	390 nm	visible	
Spectral resolution	120000	200000	
Aperture size	0.03"	0.01"	y _{slit} =45 um
Telescope F/#	20	-	NA=0.025
Entrance pupil diameter	15 m	-	
			β=0.413
Sampling	2.5-3 pix per resolution element	-	y _{slit} '=18 um
Spectral length in the			
shortest			
image line	6 nm	-	

Conceptual/principal assumptions (I)

- On the current stage the spectrograph is considered separately from the polarimeter
- It's supposed to be a multi-channel echelle spectrograph with following parameters of the channels (see presentation by Sebastien Vives, @ this workshop)
 - $\circ~1^{\rm st}\,({\rm FUV})$ channel 90-120nm,
 - o 2^{nd} (MUV) channel 120-220nm,
 - \circ 3rd (NUV) channel 220-400nm.
- ➤ The channels uses similar optical designs with minor changes. All the design concepts and estimations are demonstrated <u>on the example of the 2nd channel</u>
- The design uses the minimum possible number of optical surfaces in order to increase the throughput:
 - OAP mirror as the collimator,
 - Echelle grating,

Aix*Marseille

• Single reflective grating as the cross-disperser.

Conceptual/principal assumptions (II)

Aix*Marseille

- The previous assumptions implies that the optical system is limited by aberrations (at least for a part of the working range).
 - So the spectral resolution value used for analytical computation should be higher than the target value, i.e. the collimated beam diameter and/or echelle AOI is intendenly increased.
 - Possible alternative is a higher energy concentration in the spot due to use of additional surfaces

Technological assumptions

- ➤ The detectors have the following parameters (or higher)
 - 0 90-120nm and 120-220nm is registered with MCPs of about 100x100mm. Pixel size is 6 um.
 - 0 220-400nm is registered with CCD of about 4kx4k (13 um pixel).
 - o Mosaic designs are possible
 - o Increase of one dimension or curving is possible for the MCP detector
- "Technologically safe" parameters for the echelle are
 - Grooves frequency <100 gr/mm
 - \circ AOI < 80°.

Aix**+**Marseille

Camera mirror and the cross-disperser represents a single element, which has the following features

- Can have any shape, including aspherics and Zernike-based freeforms.
- Can have a complex grooves pattern.

Current baseline design concept

Parameters	Value	Comments
Collimator focal length	1939.5 mm	= Largest dimension of the
		instrument
Echelle grooves frequency	101 gr/mm	In the safe zone
Echelle AOI	69.436 °	In the safe zone
Orders	85-155	Feasible high-order mode
Detector format	50.8x45.1 mm	Can be single square detector
Cross-disperser grooves	500 gr/mm	Manufacturable
frequency		
Cross-disperser focal length	800 mm	Manufacturable
Length of the image lines		
1 st	50.84 mm	
Last	24.97 nm	
Spectral length of the orders		
1 st	<u>2.6 nm</u>	Factor of 2 difference
Last	<u>0.7 nm</u>	Order of magnitude
		difference

The optical scheme represents almost classical echelle spectrograph In a quasi-Littrow mounting with a single cross-disperser

Spectrum format

Optical quality and resolution (I)

WIDTH ENTRANCE SLIT WIDTH, MICRONS 18.0000 FULL WIDTH ON A HALF OF THE MAX, MICRONS 24.1920 WIDTH ON LEVEL 0.1, MICRONS 57.6000

WIDTH ENTRANCE SLIT WIDTH, MICRONS 18.0000 FULL WIDTH ON A HALF OF THE MAX, MICRONS 39.1680 WIDTH ON LEVEL 0.1, MICRONS 61.6320

WIDTH ENTRANCE SLIT WIDTH, MICRONS 18.0000 FULL WIDTH ON A HALF OF THE MAX, MICRONS 24.7680 WIDTH ON LEVEL 0.1, MICRONS 47.8880

217.4 nm $IF \; FWHM = 24.2 \; \mu m \\ Spot \; RMS = 27.2 \; \mu m$

220.0 nmIF FWHM = $24.8 \mu \text{m}$ Spot RMS = $30.2 \mu \text{m}$

200 µm

Wavelength,µm

Spectral resolution in the 85th, 120th and 155th orders vs the target values

Cross-disperser grating sag: Sphere R=1601.05 mm +Zernike modes: V. ast 1 and 2, V. coma 1, V. tref, V. quadrof., Prim sph.

Aix*Marseille

Residual after the BFS subtraction RMS error = $6.65 \ \mu m$ Max error = $32.12 \ \mu m$

Notes on the cross-disperser (II)

Aix*Marseille

The grating has variable line spacing defined by the equation:

Grooves frequency vs. the Y coordinate on the cross-disperser surface

Comparison of the trial designs

Aix*Marseille

Possible implementation of the cross-disperser grating

The two sources are points emitting @ 532 nm.

ENTRANCE SLIT WIDTH, MICRONS 18.0000 FULL WIDTH ON A HALF OF THE MAX, MICRONS 23.6160 WIDTH ON LEVEL 0.1, MICRONS 40.3200 IF (@ 120.3 nm with hologr. grating IF FWHM = 23.6 μm

MERIDIONAL SHIFT

WIDTH

Conclusions and open questions

> Conclusions on the optical design

Aix+Marseille

- The most of the requirements can be met with the current baseline design concept
- oThe critical requirement is the spectral length of the shortest order
- oAll the design parameters can be within the current or expected technological limits

THANK YOU FOR YOUR ATTENTION!

Design 1 and 1e – detector format

19

Design 2e – detector format

Design 3e – detector format

Aperture Diameter: 203.2593

% rays through = 100.00%

DE MARSEILLE

Footprint Diagram				
21.03.2017 Surface 16: cross disp Ray X Min = -94.9471 Ray X Max = Ray Y Min = -57.3711 Ray Y Max = Max Radius= 100.7688 Wavelength=	100.1646 56.5782 0.1203	echelle 100-200+2 ell1 1000 mm v2.1 100 gr mm.ZMX Configuration: All 12		

Aperture Diameter: 442.2392

% rays through = 100.00%

Footprint Diagram				
21.03.2017 Surface 16: cross disp Ray X Min = -206.3103 Ray X Max = Ray Y Min = -109.3438 Ray Y Max = Max Radius= 218.8040 Wavelength=	217.9511 105.7494 0.1858	echelle 100-200+2 ell1 1000 mm v2.1 how many channels.zmx Configuration: All 12		

Millimeters

480.0000

••

Scale

Design 3e – footprint on the cross-disperser

Aperture Diameter: 459.7113

% rays through = 100.00%

Footprint Diagram				
21.03.2017 Surface 16: cross disp Ray X Min = -229.2177 Ray X Max = Ray Y Min = -73.5390 Ray Y Max = Max Radius= 229.8610 Wavelength=	179.3505 55.6866 0.1252	echelle 100-200+2 ell1 1000 mm v2.1 6nm.ZMX Configuration: All 12		

Design 1m – freeforms shapes

Fitting _results

Grating

Fitting _results

03.04.2017 BFS Radius RR=-5284.8849mm Center displacement C=-0.0002mm RMS ERROR=97.8477microns MAX_ERROR=-287.2402microns

echelle 100-20042 elll 1000 m v2.1 100 gr m+mirror.mg Configuration 12 of 12

Mirror

Design 1m – VLS grating

Cross-disperser grating frequency law

26